

EBOOK

HOW TO SOLVE A PERFORMANCE SHORTFALL IN A SCROLL COMPRESSOR A PRACTICAL APPLICATION OF GT-SUITE

SCROLL COMPRESSOR BACKGROUND & TERMINOLOGY	03
PROBLEM STATEMENT	05
GT-SUITE SENSITIVITY ANALYSIS	06
RESULTS	06
CONCLUSIONS	09

Credits: The contents in this eBook have been re-created from the presentation "A practical application of GT-SUITE to solve a performance shortfall in a scroll compressor" presented by Mr Joe Ziolkowski from Trane Technologies at the 2020 GT Global Conference.

■ GT

SCROLL COMPRESSOR BACKGROUND AND TERMINOLOGY

TRANE SCROLL COMPRESSORS

03

- A scroll compressor utilizes two opposing parts, with prismatic, spiral-shaped walls to form and compress a gas, usually air or refrigerant.
- Trane scroll compressors utilize a stationary "fixed" and moving "orbiting" scroll to create the compression mechanism.

SCROLL COMPRESSION PROCESS

- Happens in three phases
 - Suction
 - Compression
 - Discharge

SCROLL COMPRESSION LOSSES

VAPOR INJECTION

TECHNOLOGIES

- Auxiliary (economizer) port located in compression to • inject refrigerant vapor
- Piping network pressure drop and heat transfer, can significantly affect mass flow rate ٠
 - Pressure drops characterized through submodeling

∎ G

PROBLEM STATEMENT

PROTOTYPE PERFORMANCE SHORTFALL

- Based on observed performance during prototype lab testing
- Economizer Mass Flow Rate 19% belowtarget (Shortfall #1)
- Compressor Efficiency 8% below target (Shortfall #2)
- Root cause investigation
 - Heavy reliance upon analytical tools
- GT-SUITE Sensitivity Analysis
 - Using detailed chamber compressor model
 - Basic level calibration

•

GT-SUITE SENSITIVITY ANALYSIS

• Full-Factorial DOE

- 5 Factors
- 3 Levels
- 243 Experiments
- Performed at 2 performance rating conditions
- Quantitative sensitivity results desirable
 - Choice of min/max values must be realistic and reflective of actual differences

Home	Advanced							
a x Turn DOE OFF	Clear DOE	Refresh Experiments	DOE Type: Full Factorial	✓ # of Experiments:	243			
Gen	eral	DOE Control						
Main 🐼 Design of Experiments 🔤 EXCEL Data 🗎 🏥 All								
Para	meter	Unit	Variable	Min/Max Value Source	# of Levels			
FGAP (DOE)	meter	Unit	Variable Flank Gap	Min/Max Value Source design differences + Part Inspections	# of Levels			
FGAP (DOE) HCLdirect (D	meter OE)	Unit	Variable Flank Gap Tip Gap	Min/Max Value Source design differences + Part Inspections Assembly log	# of Levels			
FGAP (DOE) HCLdirect (D WSLdirect (D	OE)	Unit	Variable Flank Gap Tip Gap Tip Seal Width	Min/Max Value Source design differences + Part Inspections Assembly log Assembly differences	# of Levels 3 3 3 3			
FGAP (DOE) HCLdirect (D WSLdirect (D EconPressure	OE) OOE) (DOE)		Variable Flank Gap Tip Gap Tip Seal Width Economizer Gallery Pressure Drop	Min/Max Value Source design differences + Part Inspections Assembly log Assembly differences GT/CFD Submodeling	# of Levels 3 3 3 3 3 3 3 3			

SENSITIVITY ANALYSIS RESULTS

ange and Experiment Filtering

Results post-processed to the same reference frame as the problem statement

				2. The second second	~	1	**
Select	Analyze	Create	Compare	Assess	Case	Case-Sweep	Optimization
Experiments	Experiments	Metamodels	Metamodel Metrics	Metamodel Quality	Predictions	Predictions	a province of
	Fit			Assess			Optimize

Relati	ve Sensitivities and	Correlatio	n Coefficents Analysis						
#	Experiment Set	Case	Response	HCLdirect	FGAP	WSLdirect	EconPressure	EconSuperheat	Linear R-Squared
Туре		0		Factors					
1	Default	1 - Case - 1	Economizer_Mass_Flow_Rate	0.03964	0.39%	0.2400	6.2609	0.3829	0.999
2	Default	1 - Case - 1	Suction_Mass_Flow_Rate	0.06362	8.4772	0.3864	0.00046	6.01240	0.000
3	Default	1 - Case - 1	Compressor_Efficiency	0.04282	1.404	0.3808	0.00-6962	0.08220	1.00
4	Default	1 - Case - 1	Economizer Volume Flow Rate	0.09032	8.3754	0.3047	9.210	0.05885	1.999

....

06

- · Gives the relative contribution of each factor to the total performance shortfall
- Results show a model under-prediction
 - Closer on Compressor Efficiency

SENSITIVITY ANALYSIS VALIDATION

- · A qualitative and quantitative assessment was made through testing
- Results confirm an overall under-prediction of the economizer dP factor by almost 2x
- · Relative strength of the two factors produces the same conclusion

PERFORMANCE RECOVERY

- Successful recovery of most of the performance shortfall
- Recovery achieved through:
 - Reduced economizer gallery flow resistance

Reductions in nominal flank gap and tip seal clearance

CONCLUSION

- A simple sensitivity analysis was used to quickly solve a challenging performance shortfall problem
- Quantitative results were obtained by using realistic min/max factor values
- A simple validation test was conducted, which boosted confidence and helped to better quantify recovery expectations
- Recovery factors were targeted based off GT-SUITE analysis, and produced satisfactory problem resolution
- The value of a quickly solved problem, such as this could be \$50k-\$40M!

- IF YOU'RE INTERESTED TO LEARN MORE

Gamma Technologies develops GT-SUITE, the industry-leading Model-Based Systems Engineering (MBSE) CAE system simulation software.

GT-SUITE provides a comprehensive set of validated 0D/1D/3D multi-physics component libraries, which simulate the physics of fluid flow, thermal, mechanical, multi-body, structural, electrical, magnetic, chemistry, and controls.

Utilizing combinations of these libraries, accurate models can be built of practically any HVACR (Heating, ventilation, air conditioning, and refrigerant) systems such as pumps, compressors, oil and gas piping systems, and others. This makes GT-SUITE the ideal HVACR simulation software.

CLICK REFERENCES:

HVACR SIMULATION

HVACR PRESENTATIONS

INTRODUCTION TO PUMPS AND COMPRESSORS IN GT-SUITE

TRAININGS & SEMINARS

SPEAK TO AN EXPERT

7

Gamma Technologies, LLC. 601 Oakmont Lane, Suite 220 Westmont, IL 60559, USA Phone Number: +1 (630) 325-5848 E-Mail: GT_US_Sales@gtisoft.com

TO CONTACT OTHER GT OFFICES CLICK HERE