

Jon Zenker Global Aerospace Strategy

Today's Discussion

- Who is Gamma Technologies?
- Industry Trends
- How GT simulation software can help
 - Complete aircraft
 - Batteries and thermal

Case Studies

- VFS Forum 78 paper
- Airbus A3 Vahana
- NASA battery thermal runaway
- Next Steps & Open Discussion

About Gamma Technologies

Recognized Innovator for Integrated Multi-Physics System Simulation Solutions

Chicago, USA
Global
Employees
Customers
lliance Partners

Global & Balanced Footprint

Sustainable business momentum based on fundamental principles of innovation and

customer success

Market leading growth and profitability Long-term Outlook

Visionary Board comprised of successful investors and founders

Particular focus on R&D investments

Innovative Technology

Pioneering User Community

Integrated User Experiences

Trusted Advisory Support

Strong business ethics

Electric Aircraft Trends we see

- Higher power density batteries
- Shorter battery re-charge cycles
- Lighter, more efficient electric propulsion system
- Thermal management optimization
- Safety is paramount
- More integrated simulation, earlier in the design cycle

Electrified Aircraft Applications

Our Technology & Products

Enterprise-Level Platform with scalable architecture to meet current and emerging industry requirements

6 © Gamma Technologies | All rights reserved. No reproduction or use without written consent.

System-level simulation standard for the **full vehicle**

6

Gamma Technologies – System Simulation Battery Example

Early Concept Studies

- Evaluate different propulsion architectures
- For hybrid propulsion systems, evaluate different strategies for using the battery, fuel cell, or traditional engine technology

Propulsion Systems Analysis

Fuel Cells

Fuel Cell Model Validation with Power Module Test Data

> GT SUITE North American Users Conference 2018 November 5-6, 2018 Plymouth Michigan

Battery Pack Model Overview

 Battery Packs and Supercapacitors

Using Multi-physics System Simulation to Predict Battery Pack Thermal Performance and Risk of Thermal Runaway During eVTOL Aircraft Operations

> AIAA Propulsion & Energy Forum August 22, 2019 Indianapolis, IN

NASA

Jonathan Harrison¹, Devin Charles², Jon Zenker¹, and Evan Frank² ¹Gamma Technologies, LLC, Westmont, IL USA ²A³ by Airbus, Santa Clara, CA USA

 Traditional IC engine, turboprop, turbojet, turbofan systems

Battery System Analysis

- Predict SOC and SOH over the lifespan of the vehicle, accounting for:
 - Thermal Management Strategies
 - Commuting Behavior
 - Charging Patterns
 - Weather Patterns

Commuting Behavior

Charging Patterns

Weather Patterns

Case Studies

© Gamma Technologies | All rights reserved. No reproduction or use without written consent.

eVTOL Battery Pack Thermal, SOC, & SOH

- GT presented a joint paper with Airbus A³ at the 2019 AIAA P&E conference to study:
 - eVTOL pack thermal performance and SOC over real flight missions, compared to test
 - Battery SOH over different mission cycling and thermal management strategies

Battery Pack Thermal Runaway

Comparison to Orion Module Battery Pack when corner cell triggered to thermal runaway

Physical Pack

Passing Test

GT-SUITE Model

Failing Test

Temperature [C] TIME =10.1 sec

Presented By Jonathan Harrison

TFAWS VIRTUAL • 2020

ANALYSIS WORKSHOP

TFAWS

Thermal & Fluids Analysis Workshop **TFAWS 2020** August 18-20, 2020 Virtual Conference

© Gamma Technologies | All rights reserved. No reproduction or use without written consent. 13

Complete eVTOL: rotor to battery

- GT presented paper at 2022 VFS Forum 78 last week
- Complete 'rotor to battery cell' solution:
 - Is my electric powertrain sized properly to my eVTOL and mission?
 - Predicting battery SoC in different wind/turbulence
 - How does different battery types/chemistry affect performance?
 - How does temperature effect range?

Torque Variations and SOC Effects

Sinusoidal and repeating square torque excitations of lift propeller

Deviations and delay between applied torque and rotor hub torque due to propeller moment of inertia

Effects on Battery Performance

Physics-based powertrain model allows for detailed investigations of powertrain performance.

→ Higher SOC gradients and heat generation rate at repeating square excitation

Effect of Battery SOC on Propeller Speed

Additions to motor controls allow to visualize battery limiting effects on propeller performance

Limiting the battery current load to 6C which equals a DC current of $I_{\rm limit}{=}780 \text{A}.$

 $V_{\mbox{\scriptsize q-limit}}$ is calculated at every timestep and imposed on the motor controls:

Battery Chemistry Variation and Effect on System Performance

Comparison of cell chemistries

NCM811: Lithium-Nickel-Manganese-Cobalt-Oxide LFPO: Lithium-Iron-Phosphate

Battery pack sizing

Comparing single cell OCV (Open-Circuit-Voltage) curves to find battery pack configurations with matching maximum OCV values

NCM811: 80 series, 40 parallel cells - total: 3200

LFPO: 100 series, 33 parallel cells – total: 3300*

*Increased LFPO pack-size to match battery pack mass

Battery Chemistry Variation and Effect on System Performance

Battery pack performance

LFPO shows significant higher SOC gradients – due to chemistry and lower number of series cells

Propeller performance

Propeller speed decrease occurs earlier when using NCM811 cell but propeller speed shows higher gradients for LFPO

 \rightarrow Speed decrease correlates with shape of battery pack OCV curves and battery pack capacity of the two chemistries

Aircraft Range: Effect of Battery Chemistry and Temperature

Operating conditions

Hover propeller at constant speed

Constant temperatures are imposed on the Battery Pack: $T_{\text{pack}}{=}[0,{10},{20}]^{\circ}\text{C}$

Battery performance

NMC811 pack shows lower SOC gradients compared to LFPO Performance reduced at lower temperatures

Extending the thermal model

Internal thermal solution to calculate an accuare temperature based on electrochemical reactions, resistive losses and entropic heating

Modeling of heat transfer to surrounding parts or cooling

Next Steps

- Gamma Technologies offers simulation software with industryleading engineering support included
- We are happy to discuss how GT can help your organization
- Please contact us to arrange a call or web meeting

Contact: Jon Zenker, j.zenker@gtisoft.com

GT-SUITE additional capabilities

Analyze Statistical Variability Analysis Example: Battery Thermal

With GT's statistical variance and Monte Carlo abilities, analyze how variance in cells affects module behavior

Design Optimization

DOE Analysis

- Visual, interactive design exploration
- Fast optimization through metamodeling

Integrated Design Optimizer

- Fast and easy setup and execution
- Vary Parameters to match experimental results

Distributed Computing

- Exploit High Performance Computing
- Run many cases simultaneously

²⁴ © Gamma Technologies | All rights reserved. No reproduction or use without written consent.

Multi-Physics Requires Flexible and Open Platforms

No single tool can complete all the simulation related tasks on its own, requires collaborating with an ecosystem of tools

Co-simulation with many commercial tools

 Write your own user code in Python, C, Matlab (via C or Simulink), or Fortran

Configure models for MiL, SiL, or HiL

